
1

NAS User Interfaces

Dan Wallach and Tom Woodrow

NAS Systems Development Branch
NAS Systems Division

NASA Ames Research Center
Mail Stop N258-5

Moffett Field, CA 94035

Abstract

Graphical User Interfaces at NAS have been developed over the past five years us-
ing the proprietary Silicon Graphics Inc. (SGI) Graphics Library (GL) as well as
the locally developed Panel Library. The Panel Library was built to offer a higher
level library to build user interfaces . Panel Library has been highly successful, but
suffers from several problems. With the forthcoming upgrade of the Silicon Graph-
ics Operating System IRIX 4.0 there are several new alternatives with respect to
user interface development . This paper describes the alternatives, recommends a
transition to an X/Motif development environment and defines an implementation
plan.

1. Current Development Environment

Currently, the production SGI workstations at NAS are running the IRIX
Operating System, version 3.3. In the next Operating System release, the Window
System will transition from a Sun Microsystems NeWS-based implementation to an
MIT X-based implementation. This should not cause significant problems for the
majority of existing graphics applications. However, those applications which use
specific and even undocumented features of the current window system will require
software modifications. We have had development versions of the Operating Sys-
tem in-house for some time and have verified this.

Two of the major GL based tools developed at NAS are the Panel Library
and Panel Editor. These were developed by David Tristram and Eric Raible as an
alternative to writing user interfaces directly in GL. The Panel Library defines high
level graphical objects which are composed of lower level GL primitives. These
graphic objects can be used as components in a graphical user interface. At the time
the Panel Library was developed, there were no other high level user interface li-

2

braries available on the SGI platform. Currently the Panel Library is used in a num-
ber of applications, both in-house (most notably FAST) and external. It is available
through COSMIC. There are currently several problems with Panel Library and the
Panel Editor:

1) We have lost most of our Panel Library development expertise (both the author
and the major support developer have left NASA or moved on to new jobs with-
in the organization).

2) There is an inadequate support organization (in fact, bugs are being fixed by us-
ers rather than NAS).

3) The Panel Editor makes extensive use of undocumented and no longer support-
ed calls. It will require a major rewrite to function in IRIX 4.0

2. Desired Development Environment

We need to continue some level of support for the Panel Library, if only for
those applications which depend on it. However, an alternative which provides
equivalent capability and is vendor supported would be preferable for new devel-
opment. Additionally, we should take advantage of any emerging standards. It is
required that a graphical layout tool accompany any new user interface library. Al-
though these tools are typically used only early in the user interface design process,
they can greatly simplify user interface design. This is especially true for users who
are unfamiliar with or frightened by the window system.

In summary, the desired User Interface development environment will in-
clude the following:
1) continued support for the Panel Library as is (primarily for existing applica-

tions)
2) a new user interface library which:

a) includes at a minimum the set of graphical objects defined in the Panel Li-
brary

b) works under IRIX 4.0 (i.e., is either GL or X based)
c) offers external support (vendor or 3rd party)

3) a graphical layout tool which can be used to create interfaces composed of any
of the graphical objects in the user interface library

3

2.1 X based Alternatives

Over the past three years the X Window System has emerged as a de facto
windowing standard. There has been a large volume of code developed by many
vendors and users. One of the strengths of the X Window System is the extensive
range of options in user interface toolkits. Of these toolkits, there are 2 which ap-
pear to be more robust than the others and have gained the largest user base. These
are Motif, from the Open Software Foundation, and XView (OpenLook), from Sun
Microsystems.

With IRIX 4.0, NAS software developers will have access to these robust
user interface toolkits. Most computer vendors support the X Window System and
Motif. Many have additional toolkits available from third parties. Below is a chart
of the current NAS production hardware vendors and support options available for
X, Motif and OpenLook

Vendor OS version X Motif OpenLook
SGI IRIX 4.0 SGI SGI SGI
Cray UNICOS 6.1 CRI CRI 3rd party

Amdahl UTS 2.11 Amdahl Amdahl none
Sun SunOS 4.1 Sun 3rd party Sun
Convex ConvexOS 10.0 Convex Convex Convex

Almost all computer vendors now have a plan for X Window System sup-
port.

Graphical layout tools are very useful early in the development of the user
interface. There are a wealth of choices available in the X world and we have eval-
uated several. These are UIM/X, from Visual Edge, Builder Xcessory, from Inter-
active Computing Solutions, and TAE Plus, from NASA Goddard. All run on SGI
workstations under IRIX 3.3 and 4.0 and Sun workstations under SunOS 4.1. Their
relative merits will be discussed below.

While it is important for the libraries to be available across all NAS systems,

1. Currently, the Amdahl is running UTS 1.2. Changeover to UTS 2.1 should occur with the next 3

- 6 months. Amdahl says it will begin shipping X and Motif with the operating system by 1Q92.

4

the layout tool need only execute on NAS workstations or the Support Processing
Systems. This is because you can do your layout on the workstation and compile
the code anywhere you have the libraries.

The X Window System is implemented in a client/server model. There are
client processes which solve specific problems, like creating a virtual terminal win-
dow; and there is a generic server which handles all graphical output. The X server
executes on a user workstation and controls the screen. The X client can execute
anywhere on the network. Clients communicate with the X server using TCP/IP
sockets. For this reason, the X Window System is called network transparent; i.e.,
the clients don't care whether the server is local or remote. Because of this, you can
run X clients on a centralized machine and direct your graphics to any workstation
you like. For brevity, we will ignore issues of security.

Because X graphics can be distributed to any X server over the network,
running the layout tools on the Support Processing System (SPS) and directing the
graphics to the workstations has the appearance of running directly on the worksta-
tion. Several existing applications on the SPS already do this (Mathematica, WingZ
and FrameMaker). For these reasons, we probably only need to provide the layout
tools on the SPS or (optionally) workstation fileservers.

2.2 Other GL based Alternatives

Although the X Window System offers many new alternatives for user in-
terface development environments, there is at least one other recent alternative.
This is the Forms Library and layout tool, designed by Dr. Mark Overmars of Utre-
cht University, in the Netherlands. Forms is funded by a grant from the Netherlands
Organization for Scientific Research.

The Forms package is built on top of the GL library from SGI. It is available
in the public domain.

Although Forms is available freely, it suffers from some of the same prob-
lems as the Panel Library:

1) There is no available support organization (Overmars currently is supporting
the software himself).

2) The user base for this product is quite limited.
3) There is development required to replace the Panel Library specific actuators

5

(these will be discussed in more detail in the next section).

Due to these problems, the Forms alternative should not receive serious con-
sideration at this time. Individual users may choose to use it on their own. Forms
will be installed in the unsupported area on the Support Processing System.

3. Detailed Library Comparisons

The requirements for a NAS user interface library are based initially on Pan-
el Library functionality. This is in order to assure a migration path for existing soft-
ware.

The Panel library contains a large number of graphic objects, called actua-
tors. Many of these do not appear in any other toolkits available in the X environ-
ment. The following table shows a comparison of Panel and Motif.

Feature Panel Motif XView

Misc.:

scripting YES no no

3-D look somewhat[1] YES YES

Dials YES no no

Context sensitive help no no YES

Clocks no no[2] no[2]

Scrolling regions YES YES YES

Pop-up requesters no[3] YES YES

File selector no YES YES

Meters YES YES[4] YES[4]

Strip charts YES no[5] no[5]

Iconified buttons[6] YES no no

Color choosers (pallette) YES no no

Text:

Input: one line only YES YES YES

6

[1] Panel's 3-D look is supported only by some buttons, and is not consistent.
[2] The Athena widgets, an example widget set which comes with the standard MIT
X distribution, support clocks (example: xclock), which could possibly co-exist
with Motif widgets.
[3] Panel supports pop-ups insofar as you could open another panel, but the other
systems actually allow a popup to temporarily disable all the other buttons.
[4] Motif could support digital meters. Panel supports a specific output-only analog
meter. Forms could emulate such a meter with a Dial.
[5] The Athena widgets support strip charts (example: xload) which could possibly
coexist with Motif widgets.
[6] Panel allows a number of buttons to simply disappear into an icon. Other pack-
ages easily allow a button to cause a pop-up to appear, duplicating the functionality.
[7] Motif allows using the arrow keys to traverse menus, as well as using the return

Output: one line only YES YES YES

Input: multi-line (editor) no YES YES

Output: multi line (scroll-
ing)

YES YES YES

Buttons:

keyboard equiv. [7] no YES YES

radio YES YES YES

cycling YES YES YES

arrows YES YES YES

Scroll Bars:

2-D positioners (puck) YES no no

value-attached YES YES YES

handles change their lengthno YES YES

multi handles (multislider) YES no no

differential[8] YES no no

slideroids[8] YES no no

"fine" control YES YES YES

Menus:

sub-menus no YES YES

7

key to indicate a "default" action.
[8] Differential sliders move up or down with a velocity proportional to how far the
mouse is from when the select button went down. Move the mouse farther, the slid-
er moves faster. Slideroids are like differential sliders, but there is not a scroll bar
displayed, just a number indicating the current value.

8

3.1 General Impressions

Below are some general impressions of the libraries:

Panel

Panel is relatively nice. It contains a large number of strange and different widgets
which are not available anywhere else, like multi-sliders, pucks, and palettes. Be-
cause it was developed at NAS, there are no licensing problems when programs are
sent to COSMIC.

We would probably keep Panel forever if it were not for the glaring problems which
were stated in section 1, above. The most serious problems are lack of support and
expected incompatibility with IRIX/GL 5.0.

Motif

OSF/Motif is available from a number of vendors, and supports a consistent look-
and-feel across these platforms. To use it on the IRIS requires knowing the X tool-
kit (Xt). Motif will be around for a very long time as many companies have adopt-
ed it.

For this reason, Motif is a good system to write future programs in, except:
•GL-style event handling isnot supported (qdevice(), qread(), etc.).
•IRIS programs will not run on pre-IRIX 4.0 operating systems.
•Motif can add a thousand lines of code to a program, and as much as a mega-

byte of library linked to it with non-shared libraries.

Many commercial products improve the programming environment and make Mo-
tif something we can recommend to use. Motif, and most X toolkits, without a lay-
out tool are very tedious during the layout phase.

3.2. User Subjective Feel

The most important thing about a user interface is how the users react. The buttons
in Motif and Forms have adequate appearance, but the on-or-off state of Motif tog-
gle-buttons is not readily apparent given default settings. Forms push-buttons and

9

light-buttons are easy to understand, as are all the Panel actuators except the
typeins.

Of the three, Motif seems to run hands-down fastest. It is just smoother. Part of the
blame lies in Forms or Panel using GL calls which really make X calls and translate
them around. Much of this performance problem is supposed to improve, but we
will see.

Panel

Panel is functional, but ugly. All panels are the same ugly blue color. Sometimes,
a panel can take an awfully long time to appear on the screen. Slider response is sat-
isfactory, though still not as crisp as Motif. Menus are not wonderful, but they
work. Panel has tons of buttons and output devices that the others lack, although
most of these could be implemented in the other widget systems without too much
work.

Motif

Motif looks as good as a user's resources. You can reconfigure an X/Motif program
by defining resource values in your own X resource database. This is nice because
if you do not like the default look, you can fix it, without access to source code. Mo-
tif windows appear fairly quickly and sliders respond amazingly well. Programs
feel faster.

Motif provides some fairly obscure buttons whose utility seems limited.

5. Graphical Layout Tools

The Panel Editor (pe)

For Panel, Eric Raible wrote 'pe'—the Panel Editor. pe lets you lay out your various
panels, and will generate a LISP-like output for itself, along with normal C output
for your program. The LISP output is very nice because it is human editable, espe-
cially with an editor like Emacs which is very good at Lisp mode. To sum it up:

Good features of the panel editor:
•human editable output (LISP syntax)
• context-sensitive help

10

Problems with the panel editor:
•does not work under IRIX 4.0
•uses an undocumented call of 3.3.x—Raible is not interested in fixing this.
•slow on a PI, reasonable on a 320VGX
•does not support many widgets that Panel supplies (multisliders, slideroids,

view/graphframes, palettes)—this often means using pe to generate the origi-
nal interface and then modifying the C code by hand. FAST does not even
bother with pe for this reason.

•very little documentation (but not really necessary)

UIM/X

UIM/X is a commercial product. It runs under IRIX 3.3.2 or 4.0 without problems.
As UIM/X is a commercial product, it should also be available for Sun or other plat-
forms. UIM/X has several interesting features pe and fdesign lack. Foremost, UIM/
X contains a complete C interpreter. Currently, it does not take much effort to crash
UIM/X with bad C code, but at least they go to great effort to save your work before
the program dies. The C interpreter is not really meant as a general development
environment (like Saber-C, for example). Rather, it allows button actions to be
specified while they are laid out. If the user wants a button to cause a file requester
to come up, the callback will popup the file requester, all within UIM/X. This is a
very nice feature. In fdesign or pe, the user would only be able to specify the call-
back's name, and the user would not be able to test the interaction until later.

UIM/X's methodology for laying out widgets is slow and painful. You must select
the desired widget from a nested menueach time.

UIM/X's native save format is similar to X resources—it is very human readable,
although it is strongly recommended that you do not edit it. UIM/X's C output uses
a proprietary library of calls, not normal Motif code. This brings up UIM/X's big-
gest flaw: UIM/X is a commercial product. We would buy it from Silicon Graphics
on the same basis we buy other commercial software. With the standard license, we
payper workstation which could grow expensive. Also, with the default distribu-
tion, we receive a binary libuimx.a, but no source. In the next version of UIM/X,
tentatively available in the next several months, straight Motif code will be output,
eliminating the need for libuimx.a completely.

Good features:
• Runs on IRIX 3.3.2 and 4.0.

11

• Supports everything in Motif.
• (theoretically possible to) add your own widgets.
• Built-in C interpreter.
• Extensive manual.

Problems:
• per workstation licensing costs
• requiresat least 16 MB of RAM to run, and 32 MB would be better. The bi-

nary image alone is 4.5 Megs. It seems to run better remotely from wilbur,
with its 128 Megs.

• needs more on-line help than it has—very weak right now
• still has strange bugs in places—will crash when you do something weird in

your C code.
• some common interactions (like, changing the label name on a widget) should

be easier to do than they are
• has no support (currently) for GL, GLX widgets, and other IRIS-specifics.

Builder Xcessory

Builder Xcessory is a commercial product from Interactive Computing So-
lutions. The product is in version 2.0 and uses Motif version 1.1. Below are some
thoughts about the product:

Good Features:
• Very intuitive interface (significantly better than UIM/X).
• Very fast (lots faster than UIM/X).
• All resources are available as selections from a list (rather than entering the

resource as a text string in UIM/X).
• Good on-line help.
• The generated C output code is human readable and usable. Five different files

are generated: callbacks-c.c, creation-c.c, main-c.c, makefile-c, and app-de-
faults. A real user will only need to modify callbacks-c.c and can use the other
c files to generate quick test applications.

Problems:
• Per workstation licensing costs (same as UIM/X).

TAE Plus

12

TAE Plus is a product developed at NASA Goddard. It is available to NASA
centers at no cost from COSMIC. The tool is due to be released for SGI by early
1992. We evaluated version 5.1 for the SGI platform. It is not as strong a candidate
as either of the commercial products mentioned but may be installed on the system
because of its cost. The determination whether to install this on the NPSN will be
made based on user feedback from several test users.

Good features:
• Source code included.
• It is free to any NASA user.
• Limited free support is provided by the developer.
• A significant amount of documentation is provided.

Problems:
• Generated code uses a higher level library on top of X/Motif called Wpt.
• Use of TAE is less intuitive than either UIM/X or Builder Xcessory.

6. Recommendation

Motif and XView will be available on the SGI platform, bundled with the
4.0 Operating System. We currently have it in-house for evaluation with IRIX 4.0.
However, we will require source code to the Motif libraries to use as examples if
we decide to make any custom graphical objects. XView source code is available
via anonymous ftp from many sites. We recommend the purchase of a Motif source
license for one Silicon Graphics machine. A Motif source license has a one time
fee of $1,000.00.

We further recommend the purchase of Builder Xcessory for all 4 SPS machines.
Builder Xcessory is priced on a per CPU basis at approximately $2500 per copy.
Providing the layout tool on the SPS has the following benefits:

• Cost is limited to 4 copies (approx $10K)
• People at remote sites can use it as well as users located at Ames
• If we decide in the future to change to a new layout tool, we are not heavily
invested with this one.

Based on user experience with Builder Xcessory, we may decide to buy more copies
in the future or purchase another GUI tool.

7. Plan

13

1) Acquire Motif source license to aid in widget development.
This is currently in progress. A Purchase Request was initiated in 10/91.

2) Develop Panel specific widgets in a Motif style to augment the Motif library
(puck, multislider, strip chart, dial, meter).
These are currently in progress. Development of puck, dial and meter is nearly
complete. Multislider and strip chart should be completed by 4/92.

3) Acquire graphical layout tool.
We plan to initiate a purchase for a graphical layout tool in 1/92.

8. Conclusion

With the transition to IRIX 4.0 some user applications will require modifi-
cation due to the underlying window system change. We hope to capitalize on the
changeover by providing a better user interface development environment. This
will be based on the emerging standards of the X Window System and Motif. Ex-
isting applications which use the Panel Library will continue to function. We will
offer an alternative for new development and a transition path for existing applica-
tions.

14

Appendix

Included are several hardcopy examples of Panel Library, Motif and
XView. Each shows a specific layout tool and a single example program to give you
a feel for the differences in look and feel between the three.

